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Statistical mechanics of the “Chinese restaurant process’: Lack of self-averaging,
anomalous finite-size effects, and condensation
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The Pitman-Yor, or Chinese restaurant process, is a stochastic process that generates distributions following
a power law with exponents lower than 2, as found in numerous physical, biological, technological, and social
systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this
process invariably gives rise to a condensation, i.e., a distribution dominated by a finite number of classes. We
also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the
process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other

statistical mechanical models.
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I. INTRODUCTION

Despite their extreme behavior, power-law tailed prob-
ability distributions empirically describe the partitioning
(i.e., the organization into subclasses) of a large variety of
physical, biological, technological, and social systems [1]
and the degree distributions of many complex networks
[2,3]. The most extreme case is the systems where the power
laws p, have exponent y between 1 and 2. Indeed, if y
e[1,2] both the first and the second moment of the distri-
bution diverge meaning that the system is so biased that nei-
ther averages nor fluctuations are well behaved. This seems
to happen, for example, for words in a text or population of
cities (Zipf’s law [1,4,5]), the size of classes of homolog
proteins, the out-degree of transcription networks [6], the
frequency of family names [1], and of degree distribution of
different social/technological networks [7].

While the processes leading to power-law distributions
are diverse [1], there are only few available models that cap-
ture this behavior. In particular, it is useful to formulate mod-
els that help the understanding of these distributions in the
framework of nonequilibrium growth laws. The paradigm is
the Yule-Simon process [8,9], which describes an evolving
system of a growing number of elements, where the number
of classes grows linearly with the elements. It is based on the
general mechanism of the “Matthew effect” or “cumulative
advantage:” with time, more populated classes acquire new
elements with higher relative rate. The Yule-Simon process
generates power-law distributions with exponents y e (2,3]
[1]. Barabasi and Albert [10] have shown that a similar
mechanism can be used to generate power-law networks with
the same exponents that grow and evolve through preferen-
tial attachment [2,3,10].

While in some systems where exponents y=2 are ob-
served it can be argued that preferential attachment is
present, this case is not predicted by the Yule-Simon-—
Barabdsi-Albert (YSBA) model. These distributions are
more biased toward highly populated classes, so that in order
to obtain this behavior one has to reweigh the balance of
growth and preferential attachment in favor of the latter and
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in particular consider processes where the number of classes
grows sublinearly with the number of elements.

The process we consider here, called Pitman-Yor, or Chi-
nese restaurant process (CRP) [11,12], has exactly this prop-
erty, which makes it reproduce power laws with y e (1,2]. It
is commonly used in the mathematics literature, but rela-
tively disregarded by the physics community, and in particu-
lar unexplored using the tools of statistical mechanics. It is
defined as a discrete-time stochastic process generating a
partition of a number of elements in classes such that each
element belongs to a given class. In probability, the CRP is
used, for example, as a prior in nonparametric Bayesian
methods and it has been applied to multiple problems rang-
ing from modeling texts to genetics and functional genomics
[13-17]. It also maps to a non-self-averaging stick-breaking
process [12,18]. Recently, we observed that CRP-like pro-
cesses model well the evolution protein domain families [19]
and reproduce the scaling laws found by genomics methods,
which adds a strong motivation to explore them.

The mathematical characterization of the CRP has been
carried out [12] with special attention to the asymptotic of
the process at large times 7— . In this paper, we character-
ize this process with the tools of statistical mechanics. First,
we argue that the CRP always exhibits a condensation phe-
nomenon [20-26] with few classes dominating the total
population. We relate the condensation observed in the CRP
process to other known mechanisms taking place in the well-
studied phenomenology of the zero-range process (ZRP) [22]
or in network models [21]. Second, we present a calculation
that shows how the process behaves for large but finite times
T finding anomalous finite-size corrections to the asymptotic
formulas. Unlike the YSBA model [27], the lack of self-
averaging of the CRP determines for certain parameter val-
ues a nontrivial and realization-dependent finite-size behav-
ior which is our main finding. Thus, the CRP fills two
important gaps in the fundamental statistical mechanical un-
derstanding of non-self-averaging phenomena, power-law
distributions, and condensed states.
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II. GENERAL CONSIDERATIONS

At each time 7, the CRP generates a partition over inte-
gers {1,2,...,T} into different classes. Differently from
other models [21,22], the number of classes N(T) is a sto-
chastic variable depending on the realization.

The process is anecdotally a problem of customers enter-
ing a Chinese restaurant with table sharing, where the num-
ber of tables and guests per table are unbounded. Assuming
that in the restaurant there are 7 customers sitting at N(7)
tables with k; customers in each table i=1,2,...,N(T). At
time 7 a new customer enters the restaurant and either sits at
table i=1,...,N(T) with probability p; [in this case N(T
+1)=N(T)] or chooses a new table with probability pyz).
[in this case N(T+1)=N(T)+1]. The probability p;, and
Pw(ry+1 in the CRP are given by

_ki—a
T+

where 6>0 and a €[0,1).

As in the YSBA model, the CRP includes growth of ele-
ments 7 and classes N, and a preferential attachment prin-
ciple, because more populated tables are more likely to ac-
quire new customers. However, in the CRP, growth of
classes is not constrained to preferential attachment of new
class members, but these two processes are decoupled as
witnessed by the fact that the probability to add a new table
is not constant. This probability decays with the number of
guests T, increasing the weight of “hub classes,” which is the
essential ingredient to reproduce power-law distributions
with exponent lower than 2. While models producing power
laws with y e (1,2] exist [28], usually they lack the flexibil-
ity of the CRP in modulating this weight.

Rephrasing the YSBA model in terms of customers in a
restaurant, the probabilities pis to sit at a nonempty table i at
time T and the probability pim .1 to sit at a new table at time
T is pi=(1-g)k;/T, pls\,(T)H:s where k; is the occupation
number of table i=1, ...,N(T). Note that this means that new
tables are added with statistically independent moves, while
in the CRP the addition of a new table is statistically depen-
dent on the configuration of the partition [19].

The CRP has been studied extensively in the mathemati-
cal literature [12]. The occupation distribution in the limit
T— o and k finite and fixed is F, m(k):ﬁ’;;—z_%). Further-
more, the statistics of the number of tables N(7) has been
characterized. The average value of the number of tables
(N(T)) at time T is given by [12]

aN(T) + 6

T+60 ° M

Pi PN(T)+1 =

Ire+1)

——T* for >0
(N(T)) = al'(6+ a)

0log(T+6) for a=0.

In the limit of large 7, the full probability distribution for
N(T) P[N(T)] is known [12], when a=0, to be a Gaussian of
mean m and standard deviation o2 with m=0>=61log(T). In
the case @>0, instead, the variable s=N(T)/T asymptoti-
cally in time follows the Mittag-Leffler distribution g, 4(s)
[12]. This point is particularly interesting [12,29] because in
the asymptotic limit, the Mittag-Leffler distribution has finite
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fluctuations implying that the number of tables in the
Pitman-Yor process with a>0 is a non-self-averaging quan-
tity.

III. CRP IS ALWAYS IN A CONDENSED STATE

We now provide an argument comparing the phenomenol-
ogy of the CRP to models exhibiting condensation phenom-
ena. Extending the validity of the asymptotic formula F_,(k)
for all values of k, we can estimate the occupation of the
maximally occupied table in the CRP. We observe that this
table has always occupation k,,,=O(T). In fact, since
F.(k)~k*, we can evaluate the occupation k,,, of the
maximally occupied table by imposing the defining condition
that the fraction of tables with k> k., must be of the order
of 1/N, i.e.,

)

1
2 Fw(k):]v

k>k,

max

Since in the Chinese restaurant process N=O(T?) if >0,
and N=0O[log(T)] if =0, in both cases this estimate indi-
cates that the maximally occupied table has a finite occupa-
tion kp . =O(T).

When the maximal occupation of a class is of the same
order of the total number of elements in the partition, one
says that the distribution is in a “condensed” phase. The
reference models studied in the statistical physics community
are the ZRP and the Bose-Einstein condensation of networks
(BECN) [21]. In the BECN the condensation occurs in a
single node, for power law degree distributions with expo-
nent y=2, as a consequence of the heterogeneity of the
classes. In the ZRP, particles hop on one-dimensional lattice
sites according to prescribed laws [22], generating partitions
of elements into classes, i.e., clusters of particles, with
power-law behavior and exponent y. Depending on the dy-
namics and particle density, a condensation can occur in the
ZRP, where one class becomes occupied by a finite fraction
of elements.

It is instructive to illustrate the main differences between
the condensation phenomena occurring in the ZRP and in the
CRP: first, in the ZRP the exponent vy of the distribution can
be larger or smaller than 2, but the condensation occurs only
if y>2, while in the CRP a condensation always occurs and
the distribution of the partition decays with an exponent
14+ a<2. Second, in the y>2 ZRP, the condensation transi-
tion is driven by the density of particles p: if p>p* there is
a condensation, if p<<p* there is no condensation, and the
condensate appears in order to balance between the imposed
finite value of p and the natural average value of the power
law. Conversely, in the CRP the mean density of elements
always diverges, which, in the large T limit imposes the ex-
istence of classes with a finite fraction of the total number of
elements. Thus, a relevant difference between the ZRP (and
BECN) and the CRP is that in the CRP there is a degenerate
distribution but no phase transition. This situation closely
resembles the so-called “pseudocondensation” found [30]
where the condensation is characterized in a ZRP with non-
extensive number of classes. However, while in that case the
scaling of the number of classes with the number of elements
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is chosen ad hoc, in the CRP this scaling is a natural outcome
the process.

IV. CONDITIONED PATH INTEGRAL OF THE CRP
AND ANOMALOUS FINITE-SIZE EFFECTS

At finite sizes the @>0 CRP shows an intriguing phe-
nomenology, where the trend of individual realizations deter-
mines their distribution. This is visible from the finite-size
scaling of the distribution F(k,T). We thus study F(k,N,T),
with the additional condition of fixed number of tables N.

The probability of a partition of T elements is the prob-
ability distribution at 7—1 times the probability of an event
at time 7. Therefore, the probability P({k;}) of a process from
time 7=1 to time 7, giving rise to an occupation of N tables
i={1,2,...,N}, each one occupied by k; individuals, is given
by the product of probabilities (1) for each subsequent event.
In particular this probability can be written as

I'k;,— a)

P({ki}) = CN,T( H m) Ors o 3)

where & is the Kronecker delta fixing the total number of
customers and the constant Cyr is given by Cy = AT (N
+0/a)T'(0)/[T'(6/ a)T(T+ 6)]. Most notably, the probability
P({k;}) of a process giving rise to the occupation numbers
{k;}, Eq. (3) is independent on the history of the process. In
this case P({k;}) is called a distribution of exchangeable ran-
dom variables [12]. Moreover, since P({k;}) takes a factoriz-
able form, this probability distribution is also referred to as a
Gibbs measure [12].

We can construct a conditioned path integral of this pro-
cess by summing over all the histories keeping 7 and N
constant. Since the events in the CRP are exchangeable [12],
i.e., the probability is invariant for any permutation of the
set of class indexes, we can sum over the histories in which
the partition {k;} is generated in random order. To account for
the number of these histories we introduce the multinomial
prefactor T'!/(I1;k;! N'!). This leads to the following expres-
sion for the partition function Zy, 7:

1

T!
Zyr=— —P({k}). 4
v, S e @
N

ifi=1,...,

Similarly, the probability F(k,N,T) that in a process studied
at time 7 when N tables are full, a random table is occupied
by k guests reads

1 T!
F(k,N,T) = —— —— & (PUk; 5
(k.N.7) ZN,r{k,-},-:EI,_“,N N St 9)
or equivalently,

Iyrx Tk-a)

F(k,N,T) = (6)

Roughly, the ratio appearing at the right-hand side in this
equation is related to the power-law behavior, while the rest
gives the finite-size corrections. The function Zy ; can be
evaluated, for large 7, with a saddle-point approximation of
the integral
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T N
d_wein( I'(k-a) e—iwk) i (7)

2 o ld-a)l(k+1)
where the integration over w comes from the Fourier repre-
sentation of the Kronecker delta of Eq. (3), and the saddle
point iw*=&:= x/T satisfies the equation

ZN,T =

T _ H\(T,a,x/T)

= , 8
N  Hy(T,a,x/T) ®

where

I'm-a)

T
Hy(T,e0w) = 2 m' o e e

m=1

—om (9)

For a>0, the solution to saddle-point equation (8), x
=x(N,T, ) in the limit T— oo, depends on N, T only through
the realization-specific variable s=N/T“. In order to show
this, we first observe that the scaling of H,(T, a, x/T) with T
can be studied by approximating integral to sums in their
definition. Second, we show that the functions H,(T, a, x/T)
can be expressed as

1 [T7*-1]
N'l-a) (n-a)

1 ! 1
+———T"7 di——(e "= 1),
I'l-a) 0 t““_"(e )

H(T,a,x/T) =

(10)

where we have added and subtracted a term of the type
H,(T,®,0). Consequently, for large 7, H(T,a,x/T)
— T (e, x) while Hy(T,a, x/T) — hy(c). Inserting these
relations in saddle-point equation (8) and taking N=sT“ we
obtain

I h(a,
2 (e x) (11)
s ho(a)
proving that x=x(s,a) in the large T limit for a>0.
The final expression for Zy 7 is therefore given by
C eN log{H[a,x(s,a)/T.TT}
Zyy= AT x5 7 , (12)
N! VNJ(T, a, xIT)

where we evaluated the saddle point up to the second order,
and the function J(T, @, x/T) is given by

& log[Hy(T,a, )]

Jw?

J(T,a,/T) = (13)

w=x/T
A similar procedure applies to the evaluation of Zy 7, with
x' =’/ (T-k) satisfying the saddle-point equation
T-k H\[T-k,a,x'/(T-k)]
N HT-kax(T-k]

(14)

Following arguments similar to the one provided for the scal-
ing of x, we can show that x'=x'(k,N,T,a) at the saddle
point. Equation (14) depends on k,N,T only through the
variables s=N/T* and k/T, i.e., x'=x'(s,k/T, @). Following
a similar reasoning to the one we adopted for proving that
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the function Zy 7 in Eq. (12) depends exclusively on the pa-
rameters s, «, it is possible to show that the function Zy 7,
only depends on s,k/T,a, i.e., Zyr 1 =d(s,k/ T, a).
Therefore, taking in Eq. (6) the large k, T limit with k/T
=0(1), F(k,N,T) for a>0 satisfies the scaling relation

Zyn1k I'(k-a)

Ta+lF(k,N, T) = Ta+]

l+a
=<E> q(kIT,s =NIT*,a), (15)

where the function ¢ (containing ', x, and the second-order
corrections) represents the finite-size corrections to the
asymptotic behavior. These findings shed light on the ab-
sence of self-averaging in the process. At any given time 7'
the process will have finite fluctuations persistent also in the
limit of 7— . These fluctuations depend on the nonstation-
arity of the process and on the non-self-averaging value of
the number of classes N. Therefore, the process, if condi-
tioned on the number of classes N, shows fluctuations that go
to zero as T— . Figure 1 compares simulations with the
analytical predictions of Eq. (6). The figure shows that the
finite-size correction to the power-law tail ~1/k'*%, for some
s and large k/T, may increase its value giving rise to an
anomalous “bump” in the distribution. On the other hand,
this local maximum never develops into a concentrated “con-
densate,” and for k/T—1, for any s, the cutoff g always
dampens F.

In conclusion, we have presented a statistical mechanics
study of the “Chinese restaurant process” which generates
power-law distributions with exponents ye (1,2] by non-
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FIG. 1. (Color online) Rescaled distribution of the occupation
numbers in the Chinese restaurant process with «=0.1 and 6=1 at
different times 7 and number of tables N=s7“. We report the log-
binned distribution F(k,N,T) for s=N/T% with s=3.5 (black sym-
bols; dotted line), s=5 (red symbols; solid line), s=7.5 (blue sym-
bols; dashed line), and s=10 (brown symbols; dashed-dot line). The
rescaled data are shown for processes with 7=2500 (triangles), T
=5000 (squares), and T=10* (circles). The solid line shows the
analytical solutions calculated by solving saddle-point Egs. (8) and
(14) for T=2500.

equilibrium growth, a condensation phenomena, absence of
self-averaging, and anomalous finite-size effects. We believe
that this rich process will be of importance for future devel-
opments of the field where these trends occur, i.e., biological
evolution, complex systems, spin-glasses, and nonequilib-
rium phenomena.
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